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Structure of a turbulent crossbar near-wake studied by means of lattice Boltzmann simulation
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The turbulent near-wake of a crossbar is investigated numerically with the lattice Boltzmann method (LBM).
The crossbar is made up of two perpendicular square bars arranged in a biplane configuration and is included
in the computational domain. The Reynolds number based on a bar diameter is about 1600. The numerical
results are first tested against results of both particle image velocimetry (PIV) and laser Doppler velocimetry
(LDV). The LBM data compare well with the PIV and LDV data. In particular, the LBM reproduces the
generation of vortical structures at the crossbar as observed in the PIV data. The numerical results reveal the
presence of intermittent lateral motions along the span of the two bars, yielding fingerlike structures. It is
argued that these motions contribute to the formation of streamwise vortical structures just behind the crossbar.
These streamwise structures interlace with lateral structures also generated at the crossbar. The region over
which this activity takes place is about four diameters. Within this region, the turbulent kinetic energy at the
crossbar centerline increases and reaches a maximum at a distance of about three diameters. As the downstream
distance increases, the individual wakes merge to form a single wake with features, for x/D =20, similar to

those observed in grid-generated turbulence.
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I. INTRODUCTION

Despite the large amount of work on homogeneous iso-
tropic turbulence (HIT), there are still not clear conclusions
on issues such as the effects of the initial conditions on the
decay of turbulence (the initial conditions here are defined by
the grid geometry) and its decay. For example, in grid-
generated turbulence, where turbulence is produced by a
fluid flowing uniformly through a grid made of bars, it is
commonly accepted that the turbulence kinetic energy de-
cays following a power law, g~x" (g={u®)+{u>)+{u?) is
twice the turbulent kinetic energy, x is the streamwise dis-
tance behind the grid, n is constant, and u, v, and w are the
velocity components in the streamwise and the two trans-
verse directions). However, while HIT theory predicts that
n=-1 for an infinite Reynolds number R, ({=Ku*)\/v, \ is
Taylor’s microscale) there is no consensus as to what should
be n for finite values of R,. In addition, George [1] and
George et al. [2] argued that the decay of turbulence is not
universal and may be a function of the initial conditions.
More recently, a study of a grid-generated turbulence [3-5]
showed that initial conditions (i.e., the conditions the grid
geometry imposes on the flow) have a persistent impact on
the large scale organization of the turbulence. On the other
hand, the small scale motion appeared to be less sensitive to
the grid geometry. This was seen by using a secondary con-
traction mounted just behind the grid [6], which improved
the isotropy of the large scale motion but left almost un-
changed the small scale isotropy [5]. In that context, it is
interesting to determine the source of the anisotropy intro-
duced in the flow and how it evolves with the decay of tur-
bulence. The main issues are then to understand the mecha-
nism(s) of the production of turbulence, the redistribution of
the turbulent kinetic energy among its components, and how
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the grid geometry may impact on the decay of turbulence.
Since turbulence is produced at large scales, it is then natural
to investigate the generation of large scale structures, which,
through their interactions, distribute the energy among the
turbulent energy components through pressure and nonlinear
inertial forces.

The present paper reports on a numerical simulation of a
turbulent wake behind a crossbar made of two square cylin-
ders in a biplane configuration. The motivation for studying
such a flow stems from the desire to improve the general
understanding of the role of the initial conditions on the de-
cay of a grid-generated turbulence. Indeed, one may argue
that the crossbar arrangement can be seen as the “unit ele-
ment” of a grid made of perpendicular bars. This arrange-
ment allows us to study the crossbar wake alone (its genera-
tion and decay), which would be difficult in the actual grid-
generated turbulence where the wakes of the “unit elements”
interact quickly behind the grid. The emphasis of the work is
on the near-field region of the crossbar wake, where the in-
dividual wakes of each bar interact strongly. While a large
body of work on wakes behind cylinders (single cylinder,
cylinder pair, or rows of cylinders) can be found in the lit-
erature, not many studies of a crossbar wake, in particular
with the aim to investigate it in relation to grid-generated
turbulence, are available. Osaka er al. [7,8], for instance,
investigated the structure of turbulence behind a crossbar (in-
plane configuration) with the view to compare the develop-
ment of the wake with that of a two-dimensional wake be-
hind a cylinder. In the present study, the emphasis is on the
generation and development of the large scale vortical struc-
tures, whose interaction is the source of turbulence energy
production.

II. NUMERICAL PROCEDURE

A. The lattice Boltzmann method

The turbulent wake of the crossbar is simulated using the
lattice Boltzmann method. The LBM is based on kinetic
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theory. Rather than solving the governing fluid equations
(Navier-Stokes equations), the LBM solves the Boltzmann
equation on a lattice. The basic idea of the LBM is to con-
struct a simplified kinetic model that incorporates the essen-
tial physics of microscopic average properties, which obey
the desired (macroscopic) Navier-Stokes equations [9]. With
a sufficient amount of symmetry of the lattice, the LBM
implicitly solves these latter equations with second-order ac-
curacy. For the present calculations, each computational
node consists of a three dimensional lattice composed of 18
moving particles and a rest particle (lattice model D3Q19).
The spacings in the three directions between each node are
noted Ax, Ay, and Az.

The Boltzmann equation is discretized on that lattice and
results in the lattice Boltzmann equation, which governs the
time and space variations of the single-particle distribution
fi(x,1) at the lattice site x:

e+ €001+ AD) = e, == =L, = 96e,0), (1)

with i=0,1,...,18, 7 is the single relaxation time, At the
time step, e; (=Ax/At) is the particle velocity in the i direc-
tion and f? is the equilibrium single-particle distribution:

9 3
iq=pwi(1 +3(ei-u)+5(ei'u)2—§u2>, (2)

where p (=2,f;) is the fluid density, u (pu=2f;) is the local
fluid velocity, and w,; are the corresponding weights (w;
=1/3 for i=0, 1/18 for i=1-6, and 1/36 for i=7-18; i=0
corresponds to the rest particle in the center of the cubic
lattice, i=1,...,6, correspond to the particles on the axis
aligned with x, y, and z, and i=7,...,18, are related to the
particles on the diagonal directions).

The left-hand side of Eq. (1) is the so-called streaming
operation, which means that the particles move to the nearest
neighbors along their velocity directions (i.e., they radiate
from the center of the lattice along their velocity direction).
The right-hand side is the collision term, here modeled by
the Bhatnagar-Gross-Krook (BGK) collision operator, which
describes the redistribution of the particles at each node (for
more details see, for example, [10] and [11]). The collisions
are entirely local, making the LBM easily and efficiently
parallelized.

The choice of the LBM over the classical resolution of the
Navier-Stokes equations for the present simulations was mo-
tivated by its two important and practical advantages: (i)
extreme ease of implementation of complex solid surfaces,
and (ii) the local nature of the collision renders the parallel-
ization of any LBM code quite natural and simple. Note that
there is no need for solving the Poisson equation for the
pressure, which also provides a very significant advantage
over the classical direct numerical simulation (DNS).

B. The computational details

The computational uniform Cartesian grid consists of
800 X 120X 120 mesh points with Ax=Ay=Az (x is the lon-
gitudinal direction and y and z are the lateral directions). The
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FIG. 1.
crossbar.

(Color online) Computational domain with the

crossbar (placed at the x node of 100) is made up of two
perpendicular square bars in a biplane arrangement; in the
present case the second bar is placed perpendicular to the
first and rests on its backside (Fig. 1). The width (referred to
hereafter as diameter) of the bars, D, is represented by ten
mesh points. The downstream distance extends to x/D=70,
where the origin of x is taken at the crossbar location (y=z
=0 is taken at the centerline).

Periodic conditions were applied in the y and z directions.
At the inlet a uniform velocity (Uy=0.05 and V,=W,=0)
was imposed, and a convective boundary condition was ap-
plied at the outlet. To simulate the no-slip condition at the
bars, a bounce-back scheme was used; when a particle
reaches the wall it bounces back along the same direction at
which it arrived.

The Reynolds number, Rp=UyD/ v, was about 1600. This
is a relatively small value, which allows a reasonably good
computation grid resolution; this latter varied from about 47
at x/D=20 to 2.57 at x/D=60 where 7 is the Kolmogorov
length scale.

In order to reduce the transient period, a noise was super-
posed on the initial velocity for a short time. The “steady”
state solution was obtained after 10 000 iterations. After only
the 30 000th iteration were the various statistical quantities
calculated over 640 000 time steps.

Preliminary calculation revealed that instabilities occurred
where the magnitude of the local strain rate,

Halg=%<%+a_ué>=zemeiﬁ(fi_ﬁq)’ (3)

dxg  dx, ,
was large. This was mainly around the crossbar. To help
dissipate these instabilities, a large eddy simulation (LES)
scheme was introduced:
Vioal =V + Vs “4)
where v, is the turbulent viscosity. The Smagorinsky scheme

was used in the simulation. Thus following Hou ef al. [12]
we have

Viotal =V + (CA)2|S

; (5)

with C=0.1, A=Ax, and
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_ V/Vz + 18(CA)2(H1]H1})1/2 bl 4

S 6
In terms of the time relaxation the LES yields
1
T,o,a]=3[V2+(CA)2|S|]+ E (7)

It is important to emphasize that since the LES was used
merely as a dissipative scheme for the simulations, no at-
tempt was made to investigate various LES models and their
effects on the simulations.

Furthermore, since the LES acted at a subgrid level less
than or equal to Ax, it was believed that the LES model did
not change significantly the results concerning motions
whose scales were larger than a few times the Kolmogorov
length scale (see discussion in the next section below).

The calculations were carried out on a cluster of 16 dual
processors (effectively 32 processors each at 2.4 GHz). The
MPI2 protocol was used to perform the parallelization.

III. RESULTS

A. Comparison between LBM simulations
and PIV and LDV measurements

The computational mesh resolution (27<Ax<4m) was
of similar quality than many other DNSs based on the
Navier-Stokes equations (NS-DNS). In that regard, the LBM
simulation can also be considered as a DNS based on the
lattice Boltzmann method (LBM-DNS). However, because a
LES Smagorinsky scheme with a filter A=Ax was used to
control the numerical instabilities (mainly around the cross-
bar), one had to be careful, particularly in the near-wall re-
gion where it is known that the Smagorinsky scheme is not
accurate. Thus in order to determine the adequacy and valid-
ity of the LBM-DNS we compared the numerical results with
experimental data.

Particle image velocimetry (PIV) measurements were car-
ried out in a free surface water tunnel. The test section was 8
m long, 60 cm wide, and 60 cm deep. The water depth (/4
=50 cm) and the flow rate (94 m3/h) were kept constant.
The free surface was relatively calm with no waves occur-
ring at the surface. A biplane crossbar made of two square
bars was mounted at about 3 m downstream of the inlet of
the working section. The “diameter” of the bars was 2 cm
which gave a Reynolds number, R, of about 1600. A 200 mJ
pulsed Nd:Yag was used to illuminate the flow. The laser
sheet was shot from the top through a 10 cm diameter Per-
spex porthole. The porthole was flush with the free surface in
order not to disturb the flow. A set of cylindrical lenses con-
verted the laser light into a vertical thin sheet located at
midplane (z=0). A digital camera (Kodak ES 1.0) was used
with a charge-coupled device (CCD) (1008 pixels
X 1008 pixels). The PIV images were post-processed using
the adaptive-correlation method (FlowManager 4.30.27,
Dantec Dynamics) to obtain the instantaneous velocity fields.
Each image, which corresponded to an area of about 6 cm
X6 cm of the actual flow, was subdivided into 32 pixels
X 32 pixels with 50% overlap. The water was seeded with
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particles (Optimage Ltd.) with an average size of 30 wm and
a specific gravity of 1.0*=0.02. These particles were poly-
crystalline in structure and provided a high light-scattering
efficiency (five times greater than latex spheres which have a
similar refractive index).

Figure 2 shows examples of computed (left) and mea-
sured (right) velocity fields at z=3D (top) and z=0.1D (bot-
tom). In the figure, y is in the vertical direction and x and z
are in the horizontal plane and the flow is from left to right.
In the top figures, only a region around the upper part of a
cylinder is shown to better visualize the velocity field. The
PIV velocity field shown in the bottom right figure is taken at
a z plane located very near the surface of the vertical bar
(delimited by the vertical solid lines); it was difficult to mea-
sure the exact position of the laser light sheet.

Clearly the LBM-DNS velocity fields present similar fea-
tures to those observed in the PIV data. At z=3D the PIV
data show a counterclockwise vortex (illustrated by a stream-
line) taking place over the bar. It was observed in the PIV
film sequence that these vortices occurred much less fre-
quently than the clockwise vortices. It is for this reason that
this velocity field is selected for comparison with the simu-
lation. The figure on the left clearly shows that the LBM-
DNS reproduces these rare counterclockwise vortices with
reasonable accuracy. The simulation reproduces also the up-
ward vertical motion and the large clockwise vortical struc-
ture visible in the PIV data. While not shown here, it was
verified that the simulation faithfully reproduced the flow
features around a bar as observed in the PIV data. For ex-
ample, the clockwise vortices generated at the wall and their
shedding were well reproduced in the LBM-DNS simulation.
At z=0.1D, the lateral motions observed close to the vertical
bar in the PIV velocity field are also observed in the LBM-
DNS data. The flow behind the vertical bar where vortical
structures are visible in the LBM-DNS is very much similar
to that observed in the PIV data. It is further encouraging and
satisfying to observe that the scales of the computed vortical
structures are of similar length than those seen in the PIV
data.

The LBM-DNS simulations were further assessed with
laser Doppler velocity (LDV) measurements. The LDV have
been carried out in a constant-head closed circuit vertical
water tunnel with a 2 cm long square (250 mm
X250 mm) Perspex (20 mm thick). The tunnel was free of
any problem arising from contamination, pumps, and vibra-
tions. A biplane crossbar made of two (Perspex) square bars
was mounted at about 1.3 m downstream of the inlet of the
working section. The diameter of the bars was 11 mm yield-
ing a Reynolds number R, of about 1600 when the velocity
upstream of the crossbar was about 0.15 m/s. The free-
stream turbulence intensity at that velocity was about 3%.
The LDV measurements were carried out with a three-
component fiber-optic LDV system (Dantec). The laser
source was a 5 W Ar ion. A two color probe was used in
forward scatter mode to measure simultaneously the stream-
wise and transverse components of the velocity. The measur-
ing volumes were about 0.063 mmX0.063 mm
X 0.47 mm each. The data acquisition was made with two
Dantec enhanced burst spectrum analyzers (BSAs) to which
the photomultiplier signals entered. The data rate was typi-
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FIG. 2. (Color online) Computed (left) and measured (right) instantaneous velocity fields. Left: z=3D, bottom: z=0.1D.

cally about 450 Hz. About 30 000 samples were collected at
each data point. No artificial seeding was used as the natural
seeding of the water was found sufficient for the measure-
ments. The effect of the velocity bias was corrected by
weighing individual realizations with the transit time of par-
ticles in the measuring volumes [13].

Figure 3 presents both the LBM-DNS and LDV data for
the mean velocity (U) and the streamwise (u') and transverse
(w') fluctuating components of the velocity along the center-
line of the crossbar wake (the prime denotes the rms). The
data are normalized by the mean velocity U, taken upstream
of the crossbar. There is a general good agreement between
the LBM-DNS and LDV results. For example, the stream-

wise location of minimum of U and the magnitude of the
minimum are well reproduced in the LBM-DNS data. Of
particular interest is also the very good reproduction of the
streamwise locations of the maximum in u’ and w’ (a log-log
scale was used). Furthermore and quite remarkably, the cal-
culated w' profile follows closely the measured one. There
are, however, some discrepancies between the LBM-DNS
and LDV data. The recovery of U after its minimum is
slightly underpredicted by the LBM-DNS and the measured
u' profile appears to be systematically higher than the calcu-
lated one. Also, while the LBM-DNS captures well the x
location of the first crossover between u’ and w’, it predicts
the second crossover at x/D larger than that found in the
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FIG. 3. Computed (lines) and measured (symbols) mean velocity and velocity fluctuation rms along the centerline. Left figure: lines,
solid: U/U,, dashed w'/U,, dotted: u'/U,; symbols, crosses: U/ U, diamonds: w'/U,, circles: u'/U,. Right figure: solid circles: w'/U,,

open circles: u'/Uy.

LDV data. No clear reasons can be put forward at this stage
as to why the predicted u’ presents some variations from the
measurements. On the other hand, the change in the slope in
the decay of u’ and w' observed in the LDV data at x/D of
about 15 is also discernable in the LBM-DNS data, particu-
larly in w’, although at a later x/D.

To summarize the comparison between the LBM-DNS
and PIV and LDV data, one can argue that the LBM-DNS
predicts properly the near-wall flow with sufficiently re-
solved details. In particular, the vortical structures as well as
the transverse motions over the surface of the crossbar are
well reproduced. This provides confidence in the simulation
and indicates that the LES used for stability control only
does not introduce erroneous results at scales equivalent to
the mesh resolution, even in the region near the bars. Fur-
thermore, the good agreement between the LBM-DNS re-
sults and PIV data shows that the mesh resolution is fine
enough for the simulation to capture well the details of the
vortical structures that are relevant for the subsequent devel-
opment of the wake behind the crossbar. This, in turn, en-
sures that the simulated wakes and their interactions are a
faithful representation of what can be observed
experimentally.

B. Numerical flow visualization

Figure 4 shows an example of the simulated flow. It rep-
resents isocontours of the instantaneous enstrophy, w’ (o is
the vorticity magnitude), in the region x/D <15 behind the
crossbar. A cut was made in the bottom figure to reveal the
half spanwise extent of the wake of each bar. Notice the
biplane arrangement of the square bars, which causes a shift
in the streamwise direction between the two wakes.

Away from the centerline the wakes exhibit the character-
istics of two-dimensional wakes behind square cylinders.
The vortex shedding, for example, is clearly visible in the
top view. However, while away from the centerline the two-
dimensional wakes tend to keep their identity, they interact
strongly in the central region, losing their individual charac-
teristics. This is well illustrated in Fig. 5 which shows the
spectra of the w component of the velocity at y/D=1 and 3
for z/D=1 and x/D=5. For the outermost position (y/D
=3), one can observe a peak in the spectrum corresponding
to the shedding frequency of the cylinder with a Strouhal
number St (=fD/U,, f is the shedding frequency) of about
0.16. Quite interestingly, this value is close to that (St
=0.17) obtained in a grid-generated turbulence where the

FIG. 4. Contours of w? right view shows a cutout (0=y=60,0=z=60) to reveal the interaction of the individual wakes.
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FIG. 5. Spanwise velocity spectra at z/D=1, x/D=5. Dot-
dashed line: y/D=1; solid line: y/D=3.

grid is made of biplane square bars [4]. This supports the
idea that the flow behind the crossbar may present similar
features to that of a grid-generated turbulence just behind the
grid and before the wakes of successive bars interact, thus
reinforcing the argument that the crossbar arrangement may
be considered as the unit element of grid made of bars. An
interesting study would be to determine the shedding modes
(in phase or out of phase) between the individual wakes and
whether an interlocking mode would take place, and how the
subsequent turbulence decay would be altered by the shed-
ding mode.

As illustrated in Fig. 4, the near-wake of the crossbar is
populated by relatively strong coherent vortical structures.
This was already seen in Fig. 2 which reveals vortices whose
axis are aligned with y or z directions. What is remarkable in
Fig. 2 is the presence of lateral motions near the bar. To
study these further, Fig. 6 shows the flow in the (x,y) plane
at z/D=-0.7 and z/D=-1.2 (i.e., near both sides of the ver-
tical bar); the region shown starts at the leading edge of the
vertical bar and ends at a distance of about five times the bar
diameter. There is a pseudoperiodic flow pattern in the form
of streaks along the bar. While the streaks mark regions of
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FIG. 7. (Color online) Closer view of top image of Fig. 6. The
circles highlight examples of regions of spanwise motions along the
bar.

high speeds, they are somehow reminiscent of the low-speed
streaks observed in the near-wall region of a smooth wall
turbulent flow. Although no attempt has been made to deter-
mine the average wavelength between the streaks, one may
infer from the figure that the spacing is likely to be between
0.5D and D.

Examination of the right image in Fig. 6 suggests that a
“streak shedding” is taking place. Indeed, on that image
streaks are clearly visible at the bar and at x/D of about 2,
while in the left image they are clearly defined from the bar
up to x/D=1. Thus arguing that the streaks are associated to
coherent structures—different from the “classical” vortices
generated at the cylinder which form the Von-Karman
streets—Fig. 6 would indicate that the vortex shedding is
accompanied by shedding of many vortical structures origi-
nating at the crossbar.

While the mechanism for the formation of these streaks is
not clear, a closer look around these streaks (Fig. 7) reveals
that they result from the occurrence of localized spanwise
motions along the bar. These motions reflect intermittent re-
circulatory motions as clearly evident in Fig. 8 which pre-
sents the instantaneous isocontours of the z component of the

FIG. 6. (Color online) Instan-
taneous velocity field in the (x,y)
plane. Left image: below the bar,
z/D=-0.7; right image: above the
bar, z/D=1.2. The vertical bar’s
silhouette is represented by the
white closed line.
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vorticity, w,. In the figure, the ratio w,/ , 1., Where @, ;. is
the maximum of w,, is shown. One can clearly see positive
and negative w, along the bar. Furthermore, the occurrence
of w, forms a pattern consisting of pairs of positive and
negative vorticity. Notice that an average spacing between
the pairs appears to be about 0.5D and D. The figure suggests
that these localized and relatively intense w, are shed (cer-
tainly during the vortex shedding process), thus feeding the
earlier stages of the wake of the crossbar with v’ [14]. Con-
sidering that the flow around the second bar should have
features similar to those shown in Fig. 8, one can expect w’
to be also injected into the wake.

The development of the flow behind the crossbar is ob-
served in Fig. 9, which shows the instantaneous velocity field

PHYSICAL REVIEW E 77, 036310 (2008)

FIG. 8. Instantaneous isocon-
tours of @,/ @, 1, on both sides of
the vertical bar; the range of
./ W, max shown is [-0.3,0.3].
Dashed lines correspond to nega-
tive w,

in the (z,y) plane at four positions downstream of the cross-
bar (x/D=1, 3, 7, and 14). Close to the crossbar [Figs. 9(a)
and 9(b)], one can see vortical motions developing along the
span of the two bars. Such motions, which form a pattern of
positive and negative streamwise vorticity, have been ob-
served and documented in the literature—in particular Figs.
2—4 of Lin et al. [15] show similar vortices behind a circular
cylinder. These motions reflect concentrations of streamwise
vorticity (w,) along the bars and mark the presence of
streamwise vortical structures. Note that, as they increase in
size with the downstream distance, they inevitably interact
leading to their destruction, or at least reduction in their co-
herence. The figure reveals the effect of the interaction of the
two individual bars’ wakes on the velocity field as the dis-

FIG. 9. Instantaneous velocity
field in the (z,y) plane; (a) x/D
=1, (b) x/D=3, (¢) x/D=7, and
(d) x/D=14.
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FIG. 10. Instantaneous isocontours of w,/ @, y.x (left figure), and w,/ @, yqy (right figure) in the (y,z) plane at x/ D=-0.5; Dashed lines

correspond to negative values.

tance x/D increases. The two wakes, well identified for
x/D=3, becomes less identifiable at x/D=7; at x/D=14
they have merged to form a single wake, which occupies
almost the entire computational domain across the whole
(z,y) plan (only the four corners show little activities); for
x/D =20 (not shown here) the wake occupies fully the plane.
The sequence of velocity fields shows that the crossbar wake
will eventually become axisymmetric and would present fea-
tures similar to that of a grid-generated turbulence. In par-
ticular, the velocity fields for x/D =20 are similar to those
found in DNS results of a grid-generated turbulence [11].

It is beyond the scope of the present paper to discuss
further the characteristics of these streamwise structures (the
reader may consult [15] for such discussion). However, one
may provide a tentative explanation for their formation. Let
us consider the vertical bar. As seen in Fig. 8, the bar is a
source of a relatively strong intermittent v component
through the intermittent spanwise recirculatory motions tak-
ing place at the bar. The bar also generates a w component,
associated with the vorticity component aligned with the bar

axis, in this case w,. One can argue that such pattern leads to
the formation of streamwise vorticity ,. This scenario
would be similar to that occurring during the process leading
to the 3D transition to turbulence in a cylinder wake at low
Reynolds numbers [16], which yields to the A mode [17].
Accordingly, it appears that w, is a crucial ingredient for the
generation of w,. This is seen in Figs. 10 and 11 showing
instantaneous isocontours of both w, and w, in the (z,y)
plane at two streamwise locations, x/D=-0.5 and 0.5, re-
spectively (the plane at x/D=-0.5 is at the middle of the
vertical bar). In the figure, the flow is pointing out of the
page and the vertical bar is downstream of the horizontal bar
(i.e., closer to the reader). There is a relatively strong corre-
lation between the locations of w, and those of w, along the
vertical bar. This is particularly more significant in Fig. 11
than in Fig. 10. For example, along the vertical bar, where
there is an almost homogeneous input of w component due to
w,, the occurrence of v related to the intermittent presence of
spanwise vorticity yields the creation of w,. Of course, a
similar mechanism is at play along the horizontal bar result-

FIG. 11. Instantaneous isocontours of ./, . (left figure), and w,/w, . (right figure) in the (y,z) plane at x/D=0.5; Dashed lines

correspond to negative values.
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FIG. 12. Instantaneous contour of |w|/|wpy,y|=0.3. Left: front view, right: back view.

ing in generation of w, along that bar. There, w, plays the
role that w, does for the vertical bar.

A vivid description of the structures behind the crossbar is
given in Fig. 12 showing a three-dimensional representation
of an isocontour of vorticity (magnitude ratio |w|/|wyayl
=0.3) in the region —2.5=x/D=4. Two view angles are
presented: front or downstream view (the flow is into the
paper; left image) and backside or upstream side view (the
flow is out of the paper and to the left; right image). In the
front view, we can clearly distinguish blobs of vorticity along
the sides of the bars—these are most clearly defined on the
topside of the horizontal bar and also visible in the backside
view. These blobs are “resting” on top of the vorticity sheet
attached at the surface of the bars. Behind the crossbar the
flow is dominated by elongated and deformed interlaced
structures. The interlacing reflects the strong nonlinear inter-
actions between the various coherent vortical structures and
their stretching which leads to the production of turbulence
in this region of the near-wake (as can be observed in Fig. 3).

C. Decay of turbulence

The previous section showed that the region of the near-
wake comprised between 0=x/D=4-5 is populated by
streamwise and transverse vortical structures. It is important
to note that the individual wakes are still clearly defined in
this region, suggesting that they do not interact (apart from
the central region of the crossbar). However, as the distance
x/D increases the two wakes begin to interact leading to one
common wake, which bears a similarity to grid-generated
turbulence wake (see Fig. 9). It is then interesting to look at
the decay of turbulence in this wake.

Figure 13 shows the variations along the centerline of the
normal Reynolds stresses, {(#%), (v?), and (w?), normalized by
the upstream velocity U, (u, v, and w are the x, y, and z
components of the velocity, respectively). Behind the cross-

bar, turbulence is first generated as reflected in the increase
of all three Reynolds stresses. It peaks to a maximum when
x/D is about 3—4, then decreases. Throughout this variation
the distribution of the turbulent kinetic energy among its
components changes. Just behind the crossbar, (u?) is larger
than (v?) which in turn is larger than (w?) until about x/D
=0.6. Then (w?) becomes the largest and (u?) the smallest.
Notice the relatively sharp increase in (v) and (w?), with a
peak occurring at about x/D=3. The x/D region of high
values of {(v?) and (w?) is comprised between 1 and 6. It is
interesting to point out that the (x?) data compare favorably
with those taken in a near-field of a grid-generated turbu-
lence [18].

There are interesting features exhibited by the data in Fig.
13: (i) an inflexion point is seen at x/D=30 in the (w?)

0

<uu>/U

FIG. 13. Streamwise variation of the normal Reynolds stresses
along the crossbar centerline. Solid line: (u2), dotted line: (v?), dot-
dashed line: (w?).
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FIG. 14. Streamwise variation of the ratio (w?)/(v?) along the
crossbar centerline.

curve; while not clearly visible with the figure scale, a simi-
lar inflexion point is also observed in the (v?) distribution;
(ii) there is a crossover at x/D=~45 beyond which (u*) be-
comes the largest component. Point (i) suggests a transition
in the turbulence state resulting in a change in the redistri-
bution of the turbulent kinetic energy. The change is such
that more energy is transferred to () which will lead to
feature (ii) and (u?) remaining the largest component after
the crossover and during the subsequent decay. The ratio
W) /{w?) is about 1.10 for x/D>50. However, there is not
enough downstream development to determine whether this
ratio remains constant or increases.

The fact that (w?) is larger than (v?) is related to the
present arrangement of the two cylinders: the second cylin-
der, perpendicular to the direction z, promotes more (w?)
than (v?). While , and , dominate along their respective
axes, o, shows a stronger intensity. Furthermore, w, pre-
dominates around the central region (w, is comparatively
nonexistent there). Since the velocity fluctuations in the z
direction are related to the vorticity in the direction perpen-
dicular to that axis [14], in this case w,, one can then expect
to observe a difference in the lateral velocity fluctuations
close to the crossbar. Had the two bars been in the same
plane no such bias would be occurring; (w?) and (v?) would
have received the same amount of energy to the detriment of
().

Figure 13 reveals also an important result, namely that a
biplane arrangement is a source of anisotropy. This is em-
phasized in Fig. 14 showing the ratio (w?)/{v?) along the
centerline of the crossbar. (w?) is larger than (v?) over a long
distance; only when x/D >45 (at the crossover point) do the
two velocity fluctuation components become approximately
equal. For a square-bar biplane grid, with a mesh size of
M=5D, the ratio (w?)/(v?) is found to approximate 1 when
x/M>15, that is, x/D>75 [5].

The streamwise variations of the probability density func-
tion (pdf) for each velocity component were calculated (not
shown here). All the pdf’s followed the Gaussian distribution
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FIG. 15. Streamwise variation of the turbulent kinetic energy
along the crossbar centerline.

with some variations, as reflected in the values of the ve-
locity skewness S,=(u’)/(u?)*? and kurtosis K,={u*)/{u*)*
[(S,,K,)=(0.19,3.06),(0.096,3.15),(0.262,3.12);  (S,,K,)
=(-0.087,3.12),(0.026,3.24),(-0.15,3.24); (S,.K,)
=(0.0052,2.6),(-0.0375,2.96),(-0.057,2.96) for x/D=5,
20, and 60, respectively]. The u pdf was slightly skewed
toward the positive values, while the pdf of v was slightly
skewed toward the negative values. The w pdf appeared
more symmetric than the u and v pdf’s. Note that had the
two bars be in an in-plane arrangement the v and w pdf’s
would have been similar. The observed variations reflected
the biplane arrangement. Of course the pdf’s should eventu-
ally evolve toward a Gaussian distribution as x/D increases.
The results merely indicated that the evolution of the pdf’s in
the range 0 <x/D <60 illustrated the interaction between the
bar wakes. Jayesh and Warhaft [18] showed that at x/M=1
behind a grid made of square bars the pdf of u is strongly
dependant of the probe lateral position. However, by x/M
=4, the pdf becomes almost Gaussian irrespective of the
probe position. In the light of the numerical flow visualiza-
tion results presented in Sec. III B, one expects that the pdf’s
in the x/D region close to the crossbar to be strongly depen-
dant of the y and z positions. Future LBM-DNS will be car-
ried out to investigate this assessment.

The decay of the turbulence kinetic energy is observed in
Fig. 15, which shows the variation of g/ U(z) along the center-
line of the crossbar. The turbulence starts decaying at x/D
about 3—4. The decay of ¢/ U(2) reflects that of its components.
In particular, the inflexion point, observed in (w?), is clearly
visible at x/D =30, indicating that (w?) contributes more to
the turbulent kinetic energy than (u?), thus imposing its de-
cay in the early stage of the turbulence decay.

Figure 16 shows the decay of the turbulent kinetic energy
dissipation rate,

du;( du; Ju;
Etrue:V_l(_l'i'_l)’ (8)
(9xj &X] &xi

along the centerline of the crossbar. The decay of the locally
isotropic e,
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FIG. 16. Streamwise variation of the turbulent kinetic energy
dissipation rate, € along the crossbar centerline. Solid line: €,

dashed line: €.
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is also shown for comparison. There are particular features in
the figure that need to be highlighted. First, and as expected,
€. differs from ¢, for x/D <10, where the turbulence is
far from being isotropic. However, as the turbulence decays,
the two quantities tend to draw nearer, reflecting a trend of
the turbulence to approach an approximate isotropic state.
This is not too surprising. Indeed, behind the crossbar where
the turbulence, which is being produced by the large scale
motions, is highly nonisotropic, even at the dissipative
scales. As the turbulence evolves along the streamwise direc-
tion, the large structures generate smaller scale motions. As
the process continues, the small scale motions become dy-
namically separated from the large scale motions until they
can be considered locally isotropic even if the flow is not
globally isotropic. Since the dissipation is a small scales
property, the isotropic estimate of the dissipation becomes
more and more accurate as x/D increases. Second, € presents
a clear change in its decay rate. The change occurs at x/D of
about 30 and is likely to be related to the inflexion point in
the ¢ distribution, again pointing to a transition in the turbu-
lence decay.

IV. CONCLUDING REMARKS

The structure of the near-wake of a crossbar (made of two
perpendicular square bars in a biplane arrangement) have
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been investigated through direct numerical simulations using
the lattice Boltzmann method. Just behind the crossbar, the
wake is made up of the individual wakes associated with
each bar. The two wakes remain quite distinct for x/D =35,
except in the central region.

Fingerlike structures (regions of high longitudinal speed)
are generated along the span of the bars and extend for about
one to two bar diameters downstream. These fingerlike struc-
tures are associated with spanwise motions. It is argued that
these latter are correlated with concentrations of streamwise
vorticity along the bar span which mark the presence of
streamwise vortical structures. It is observed that while the
turbulent kinetic energy increases in the region x/D =35, the
contribution from its components varies. For example, for
x/D=1 the contribution from the streamwise component is
larger than the contributions of the other two, but becomes
the smallest for x/D=1. The kinetic energy reaches its
maximum at around 3=x/D=4 and then decays. During
this decay the relative contributions from the components of
turbulent kinetic energy remain unchanged until about x/d
=45 where the streamwise component contribution becomes
dominant once again.

Quite interestingly, the behavior observed in the center-
line variations of the turbulent kinetic energy, its individual
components and dissipation rate are similar to that observed
in grid-generated turbulence. Of course a grid-generated tur-
bulence is made up of the interactions of many crossbar
wakes. Nevertheless, the present results suggest that one can
expect to observe approximate homogeneous isotropic turbu-
lence along the centerline of the mid- and far-wake of a
crossbar. This can be used to isolate some of the parameters
of the initial conditions in grid-generated turbulence. For in-
stance, the focus can be placed on the shape of the bars and
crossing arrangement, while the effect of the development
and interactions of parallel wakes are not present. Clearly, in
order to validate the present argument, a comparative study
between a crossbar wake and grid-generated turbulence is
required where the geometries of the bars used for the cross-
bar and the grid are identical.
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